

ORNL Cross-Section Processing Status

Michael E. Dunn,
Maurice Greene,
Nuclear Science and Technology Division

Cross Section Evaluation Working Group Meeting Brookhaven National Laboratory November 4 – 6, 2003

> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- ENDF/B-VI Multigroup Library Development
 - Corrected processing problems with collision kinematics treatment
 - Corrected various systematic errors in processing procedures
 - Generated 238-group ENDF/B-VI library for testing
 - Currently performing various benchmark calculations with the library in the SCALE 5 code system
 - Good results obtained for various benchmark calculations; however, some results are consistently 1-2% below critical.
 - Currently investigating multigroup scattering matrices to resolve discrepancies with benchmark results

- AMPX developments to support continuous-energy version of KENO V.a
 - Developed new processing modules to support Point KENO development effort
 - Point KENO cross-section library components
 - $\overline{v}(E)$ delayed and prompt
 - 1-D continuous-energy cross sections as a function of temperature $\sigma(E,T)$
 - 2-D joint probability distributions for particle collisions $f(E \rightarrow E', \mu)$
 - Probability tables for unresolved resonance region
 - MONTEGO and JAMAICAN modules
 - Generate joint probability density functions (PDF) and cumulative distribution functions (CDF)
 - Produce tabular PDFs and CDFs in lab system
 - PLATINUM module developed to assemble Point KENO cross-section file for a nuclide
- Used AMPX to generate test ENDF/B-VI library for Point KENO
 - 50 Nuclides

Point KENO V.a Testing

Nuclear Science and Technology Division

 Prototypic Point KENO cross-section data generated for 50 ENDF/B-VI Release 7 nuclides

²⁷ Al	⁵² Cr	⁵⁶ Fe	⁵⁵ Mn	³¹ P	²⁴² Pu	³⁰ Si	²³⁸ U
²⁴¹ Am	⁵³ Cr	⁵⁷ Fe	Mo	²³⁶ Pu	²⁴³ Pu	²³² U	
$^{10}\mathrm{B}$	C	⁵⁸ Fe	^{14}N	²³⁷ Pu	²⁴⁴ Pu	233 _U	
¹¹ B	⁶³ Cu	$^{1}\mathrm{H}$	²³ Na	²³⁸ Pu	S	²³⁴ U	
Ca	⁶⁵ Cu	H ₂ O	⁵⁸ Ni	²³⁹ Pu	Si	235U	
Cd	¹⁹ F	CH ₂	60 Ni	²⁴⁰ Pu	²⁸ Si	236U	
⁵⁰ Cr	⁵⁴ Fe	K	¹⁶ O	²⁴¹ Pu	²⁹ Si	$^{237}\mathrm{U}$	

Point KENO V.a Testing

Nuclear Science and Technology Division

- Point KENO V.a used to calculate 54 different criticality test problems
 - 33 KENO test problems
 - Uranium metal (single units and arrays)
 - Uranyl fluoride and nitrate solutions
 - Mixed metal and solution problems
 - Various geometrical and reflector configurations
 - 21 benchmark problems
 - LWR-type UO₂ fuel pin lattices
 - Green-block experiments: homogenized U in paraffin blocks
 - Uranyl fluoride and nitrate solutions (low and high enriched)
- Calculations performed on DEC Alpha XP1000 workstation

Point KENO V.a Testing

		Nuclear So	cience and Technology Divisi	on (NSTD)
Case ID	Description	Point KENO ENDF/B-VI Rel. 7	KENO V.a 199-group ENDF/B-VI Rel. 3	KENO V.a 238-group ENDF/B-V
cas01	U(2.35)O ₂ pin lattice	0.9950 ± 0.0016	0.9947 ± 0.0015	0.9937 ± 0.0015
cas07	U(2.35)O ₂ pin lattice	0.9965 ± 0.0018	0.9934 ± 0.0016	0.9956 ± 0.0015
cas19	U(2.35)O ₂ pin lattice	1.0008 ± 0.0016	0.9937 ± 0.0022	0.9903 ± 0.0014
cas34	U(2.46)O ₂ pin lattice	0.9997 ± 0.0016	0.9973 ± 0.0011	0.9925 ± 0.0015
cas82	U(2.0) in Paraffin	1.0003 ± 0.0014	1.0241 ± 0.0015	1.0021 ± 0.0016
cas83	U(2.0) in Paraffin	1.0011 ± 0.0019	1.0194 ± 0.0017	0.9992 ± 0.0017
cas84	U(3.0) in Paraffin	1.0129 ± 0.0021	1.0357 ± 0.0017	1.0118 ± 0.0017
cas85	U(3.0) in Paraffin	1.0177 ± 0.0016	1.0407 ± 0.0020	1.0123 ± 0.0020
cas88	U(93.2)O ₂ (NO ₃) ₂	1.0026 ± 0.0023	1.0029 ± 0.0025	1.0090 ± 0.0021